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SUMMARY 

The existence of “eigenpeaks” and the possibility of indirect detection in high- 
performance liquid chromatography and capillary zone electrophoresis can be under- 
stood with the same mathematical treatment. The coupled transport equations, when 
suitably linearized for small disturbances, can be treated as a linear eigenvalue prob- 
lem. The solution predicts, in accordance with earlier results obtained by other work- 
ers, the existence of N eigenpeaks in a chromatographic or electrophoretic system, 
where N is the number of degrees of freedom in the description of the composition of 
the solution involved. Each eigenpeak corresponds to a capacity factor or mobility 
and is associated with an eigenvector that describes the relative intensities of the 
disturbances in all compounds that occur in the solution. An important experimental 
facility offered by these phenomena is indirect detection. A few general conclusions 
pertaining to this technique, invented before these phenomena were fully understood, 
are drawn. 

INTRODUCTION 

Usually in high-performance liquid chromatography (HPLC) and capillary zone 
electrophoresis (CZE), the distribution and transport of the various components in the 
column are considered separately; it is assumed that a solute can be transported 
without affecting the transport of another. This assumption is in sharp contrast with 
the basic facts about chromatographic and electrophoretic mechanisms. For instance, 
in adsorption chromatography (including reversed-phase chromatography), it is 
known that the adsorption of one component is associated with the desorption of 
another (displacement), the complete opposite of the above assumption! More 
incidental examples of mutual interactions are those brought about by so-called 
secondary equilibria, e.g., acid-base reactions, ion-pair formation and van de Waals or 
covalent complexation. 

Similarly, in free solution zone electrophoresis, the migration rate of an ion 
depends in general on the presence of other ions, because these determine the 
conductivity and with that the local electric field. In more particular cases, the effective 
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mobility of the ion considered depends on the various reactions (see above) that may 
alter its charge, size, etc. Therefore, here also causes for mutual interactions are 
abundant. 

How could the theories based on such unrealistic assumptions be so successful in 
describing and predicting the multitude of phenomena, with respect to peak positions 
and peak widths, that occur in columns? The main reason is not that the sample 
constituents are eventually separated: first, one would still expect malfunctioning of 
the theory due to the interaction in the first part of the column; second, we know that 
independent behaviour is still a good description even if compounds coelute, i.e., have 
been in each other’s presence during their whole column history, the observed signal 
being simply the sum of that of the two components. 

The success of the linear theory is rather due to the effective experimental 
techniques we use to make the behaviour of solutes adhere to idealized laws. Mostly, 
this can be described as buffering of conditions. Thus (a historically important 
example)‘, the activity of an adsorbent may be buffered by the addition of 
a moderator; when protolytic equilibria of the solutes occur, we intuitively choose 
a pH-buffered mobile phase; in CZE 2V3, the same is done, but the added salts also serve 
the purpose of buffering the electrical conductivity of the column. 

Under such buffered conditions, the equations describing the transport of the 
solute species are linear in species concentration. This linearization can be described 
for chromatography as follows. 

A general formulation of the transport equation is 

ack a azk _=- 
at az vR& + Dk aZ 

> 

all 1 < k < N 

where 
Z = the coordinate in the length direction; 
t = time; 
V = cross-section-averaged velocity of the mobile phase; 
zk = total concentration, averaged over the cross-section and both phases + 

possibly present support; 
ck = mobile phase concentration on the same volume basis; 
Dk = a dispersion coefficient, describing, e.g., lateral diffusion, non-equilibrium 

and flow irregularities (see below); 
Rk = retardation factor, the fraction of SOlUte in the mobile phase = ck/&. 

Some further comments should be made on eqn. 1. First, Riedo and Kovats4 
demonstrated that one cannot generally consider v as a constant, and that in an 
N-component mixture in LC there are only N - 1 degrees of freedom, and only N - 1 
equations of the type of eqn. 1 should be considered. We work ourselves around this 
complication by assuming that v is constant, either because the N - 1 other volume 
fractions are small, or because all partial molar volumes are constants. Also, one 
component is considered as an inert diluent and left out from the calculations. Second, 
the Dk values are not equal to the commonly used dispersion coefficients, as a result of 
using c” rather than c. However, they may include diffusion in the stationary phase5. 
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Third, it is assumed that diffusion, convective mixing and resistance to mass transfer 
can be lumped into one parameter Dk. This is asymptotically true for linear cases6, and 
there is strong evidence’ that it is also a good approximation for non-linear cases. 

In the general case, Rk (and Dk and possibly V) depend on all the concentrations 
ofj = 1 up to N. The resulting set of coupled, non-linear equations presents a virtually 
unsurmountable mathematical problem; even with the Dk terms cancelled and only 
one or two components, considerable effort is needed to obtain an insight into the 
system*-“. 

&, V 

However, with a low ck and other ZiS (i # k) buffered to almost constant values, 
and Dk become virtually constant. The result is 

azk -=vRk.$+Dk.$ 
at (2) 

an equation that can easily be solved. The well known result (see, e.g., ref. 11) leads to 
the familiar Gaussian curve, when the input function is a sharp spike, of the shape 

ek ” = A,/2aa,,k 
(3) 

where 
Qk = amount injected; 
A = column cross-section; 
uk = RkV; 

Oz,k =J2D,t. 
while the response to a composite input can be obtained by convoluting eqn. 3 with 
that input12. 

In capillary electrophoresis, a similar situation exists. A general equation in that 
case is 

ag a2ck -_=_-= 
at bff,k ck + Dk ’ s 

> 

where 
Z = 
lc = 

current density, which is a constant wlui tube diameter is uniform; 
conductivity& the solution, equal to Faraday’s constant times the sum 

~&$kzk for all ionic species k; 
Ir 
b,ff,k = effective mobility of species k, a signed quantity; 
Zk = charge of species k. 

A few comments should be made on eqn. 4. First, spaces charges, which would 
invalidate the relationship for the local field, E = I/K, are neglected. This is common in 
electrophoretic theories. Second, in that case, it is best to take N as one less than the 
number of independent ionic species, and the last concentration follows from the 
electroneutrality condition. 
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The values of pu,ff,k may be variable, e.g., owing to changes in ionic strength and 
reactions such as protolysis undergone by k. The value of rc is also variable in principle, 
because it is (to a good approximation) an additive function in all conductivities. As in 
chromatography, the usual experimental practice is to add such large concentrations 
of “indifferent” ions and reagents (such as H+) that rc, p&k and Dk are constants. 
Again, then, the equation is solved by a Gaussian function (or its convolution with any 
input function) and that is the usual peak shape we observe under such conditions. 

It is interesting, and the main purpose of this paper, to investigate the 
disturbances in the mobile phase or carrier constituents (being at non-infinite dilution) 
brought about by the phase migration of solutes which are at high dilution. Thus, e.g., 
in normal-phase adsorption chromatography with dichloromethane (DCM) as 
moderator in hexane as the mobile phase and ethyl acetate (EA) as the solute, with 
adsorption taking place at the front edge of the peak, EA adsorbs on the surface, 
inevitably displacing DCM. This means that the conditions at the very position of the 
peak are likely to be different from our set values. Similarly, when benzylamine (BA) is 
a solute in an electrophoretic experiment in an electrolyte buffered near to the pK, 
value of BA, its transport is bound to disturb the buffer solution; only the protonated 
species migrate through the solution, but on entering an “empty” part of the liquid, 
however, it has to be partly deprotonated in order to re-establish the protolytic 
equilibrium. Thereby the pH value will be disturbed, again at the very position where 
we want it to be constant. 

LINEARIZATION 

The fully linear model is insufficiently detailed to investigate these effects. On the 
other hand, considering the general transport equations, which in principle is 
preferable, leads7 as indicated, to a kind of mathematical complexity that precludes 
finding a solution in all but the simplest of cases, and puts very high demands on the 
mathematical a ility of the investigator. However, one can go part way along this 
path: the depen $ ence of the migration rate parameters on the concentrations can be 
simplified in such a way that the resulting set of equations is still linear, while 
preserving the mutual influence of the constituents. 

We first demonstrate this for liquid chromatography. First, the diffusion terms 
in the set of eqn. 1 are dropped; they play no essential role in the problem and can be 
re-inserted afterwards. The Rk factors (equal to the RF value in thin-layer chroma- 
tography) depend on all concentrations. However, close to the mobile phase 
composition for all reasonably behaving systems one can describe Rk as a linear 
function of the concentrations Zj (j from 1 to iV), as for all analytical experiments the 
deviation from the starting values will be small. Hence, 

& = Rf + A;,lAcl + A;,2Acz + . . . + A;,NAciv l<k<iV (5) 

where 
Ri is the R value for k at exactly the mobile phase composition; 
AC 

AL.: 
A+ are the deviations in the concentrations from that composition; 

i&e constants, to be found from an explicit expression Rk = &(cl . . . CN) as 
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As & = ck/&, it fOllOWS that 

A;i(i+k)=$z 
k i 

Insertion into eqn. 5 leads to 

(6) 

where Ak,i = &k/&. 
Two comments should be made. First, the use of the total concentration i: as the 

basic variables is unconventional, and leads to arithmic difficulties, e.g., when 
applying a Langmuir isotherm. For chromatography it can be avoided by starking 
from the equation 

azk ack 
at= -% 

and expanding & in terms of Ci rather than ck (or Rk) in terms of c”i. However, the 
unconventional scheme was adopted here in order to demonstrate the analogy to 
electrophoresis. Second, eqn. 6 can be derived more directly by using 

azk ack - V’_ at= aZ 

and expanding ck in terms of c”i. 
Returning to the set of eqns. 6, we note that it is linear. This leads to a drastic 

mathematical simplification. Most important are two facts: if a solution has been 
found, multiplication of this with a constant gives another solution; and any linear 
combination of solutions is also a solution. 

The set of eqns. 6, as noted by numerous workers4, constitutes an eigenvalue 
problem. There are N solutions Ep (p = 1 . . . IV) of the form 

(7) 

where 
1, is one of the set of N eigenvalues of the matrix 11 Ak,ill; 
ek,p is the series of constants k = 1 . . . N that is indicated as the eigenvector I p I ; 
F is an arbitrary function; the dependence of F on (z - n,,t) indicates Xl/? at a 
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translation along the z-axis with velocity I, occurs, while the shape of the 
disturbance is constant (i.e., as long as the Ds are zero). 

Insertion of eqn. 7 in the set of differential eqns. 6 reveals that in matrix notation, 
1 1 indicating a vector and 11 II a matrix: 

A, le,l = - v II-4 . hl 

the standard eigenvalue problem. 
It should be noted that, as a result of the chosen formalism, the eigenvalues 

emerge as velocities and, when v is divided out, as RF values. Other formalisms, which 
are fully equivalent but do not have the close resemblance to the treatment of CZE, 
would lead to eigenvalues in terms of capacity factors, inverse velocities, etc. All these 
different treatments would be equivalent. 

The same approach can be used for electrophoresis: expand P=~~,~/K in terms of 
the cis. It follows again that 

ack N-l 

at= - I 1 Ak,i ’ 2 (k= l...N- 1) 
i=l 

where 

a Peff,k 

H Ak,i = Ic 
aci 

The same mathematical treatment as given above for HPLC would then lead to the 
appearance of eigenvalues that are, in fact, the mobilities of “concerted” disturbances. 

In zone electrophoresis there is one important favourable condition: with 
reasonable accuracy the differential quotients Ak,i can be predicted, because K is equal 
to 

K = F 1 CipiZi 
all ions 

where F is the Faraday, while the effective mobilities p,ff& can be readily calculated 
when species mobilities and pK, values are known. Therefore, all values Aki can be 
found from first principles and physical constants that are tabulated for common ions. 
This is in sharp contrast to the situation in chromatography, where such calculations 
are normally impossible. Here one has to resort to some more or less arbitrary model, 
or to the experimental determination of the distribution isotherms. This is already a lot 
of work for a single component. When composite isotherms are to be determined, the 
work becomes very complex. The amount of data needed merely to describe such 
a system grows with 9(N), where z is the number of grid points in one concentration 
axis (e.g., studying one component with 20 grid points leads to 20 data pairs, studying 
four components with mutual interactions leads to 204 . 4 = 640 000 data). It is 
therefore not surprising that simultaneous isotherm data are scarce, and limited to two 
interrelated components. 
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“Eigenpeaks” 
The mathematics predict that N velocities occur, each with an associated 

eigenvector. This means that disturbances travel with fixed ratios of the intensities of 
the disturbances in the various concentrations. These disturbances can be indicated as 
“concerted”’ 3 or as “eigenpeaks”, while the situation is also referred to as that of 
“coherence”“. 

Why should these disturbances be so rigidly interrelated? Let us return to the 
normal-phase chromatography of EA with DCM as the moderator. In a diagram such 
as Fig. 1 we can represent the mobile phase composition, each point corresponding to 
a composition. Point M represents the mobile phase. Eigenvectors are represented by 
arrows, emanating from M. There are two of them, el and e2. In this case (where cEA = 

0, for the eluent), the el vector tells us that at the position of a positive deviation in EA 
(that is, in the commonly observed EA peak) there is a negative deviation in the DCM 
concentration, of a proportional intensity. Such a “concerted” disturbance travels 
with velocity &,. What if, by some peculiar history, the starting condition were to be 
different; let us assume that instead of a composition neatly in the direction of el or e2 
one starts with a region of the column having composition “Q”. 

I conc.DCM 

I 

1.0 conc.EA 

Fig. 1. Eigenvectors in a two-component system with dichloromethane (DCM) as the moderator and ethyl 
acetate (EA) as the solute (letters without primes) and with both components present in the mobile phase 
(primed letters). M, IV’, mobile phase compositions; Q, Q’, compositions of injected solutions. The graph has 
been calculated assuming Langmuir adsorption with the expression qs = Kici,,/(l + KEAcEA,,, + 
KDCMcDCM,,J with K,, = 4 and Km = 2. 

From Fig. 1, it is easy to see that the vector MQ can be described as the sum of 
vectors el and e2, each multiplied with a suitable constant. These would each start to 
travel with velocities I1 and A2, respectively, leading to a “separation”. That means the 
vectors behave as if they were separate compounds in a classical chromatographic 
experiment. 

This state of affairs becomes even more clear if we add some BA to the mobile 
phase, leading to mobile phase composition M’ in Fig. 1, and study the profiles of BA 
and DCM after the application of some arbitrary injection, let us say of composition 
Q’. We obtain two peaks, with (in general) different velocities, but in each of the peaks 
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BA varies in addition to DCM. In this instance there is no “peak” identification”, and 
one cannot say that one peak “belongs” to BA or DCM. What occurs would be 
described as the separation of mathematical vectors or, physically, only if the 
disturbances in DCM and EA are in the right proportions to each other can they move 
together; if not, the disturbance as a whole will be split into two sets of disturbances 
that do fulfil this requirement. 

Indirect detection 
An experimentally important aspect of the concerted disturbances is the 

possibility of indirect detection. This method has been studied by numerous workers. 
After the series of papers by Crommen and co-workersi3-15, the debate on the 
“mechanism” appears to have more or less terminated. In fact, it may be clear from 
their work and from this paper that there is no special physical mechanism involved; it 
is not necessary to assume special distribution phenomena such as two-site adsorption. 
Any transport mechanism with mutual interaction of constituents will lead to system 
peaks and the potential of indirect detection. This was well illustrated by the 
exploration of the method in capillary zone electrophoresis by two groups’6*‘7. 

Indirect detection can be illustrated by the example given above. EA, if not 
detectable as such, can be detected via the disturbance in DCM, if that compound 
could be detected. The method is quantitatively reliable, because the nature of the 
phase system and the compounds and not, e.g., the dispersion processes, govern the 
magnitude of the response. 

The detailed calculation of Crommen and co-workers, e.g., for the Langmuir 
isotherm case reveals that when c EA = 0 the DCM response is proportional to 

(%I&, - 1)-l, in which k& and k: are the capacity factors for EA and the DCM 
system peak, respectively. This means first that the response changes sign when the 
krA value passes that of the system peak, and second that when kEA approaches k:, the 
response (e.g., effective molar absorptivity) tends to infinity. The responses may look 
as in Fig. 2, and these were observed experimentally even before the explanation could 
be given. Of course, the exact equality of both k values would lead to peak overlap and 

retention time -_) 

Fig. 2. Responses in indirect detection as a function of capacity factor of the solute, with analyte peaks and 
system peak, showing the increase in response when k” approaches k6 and the sign reversal in the response 
when the analyte peak moves across the position of the system peak. The dashed line describes the hyperbolic 
curve, with a dependence like kj/(kI - k& on the capacity factor of the solute ki. 
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the impossibility of quantification. An example may serve to illustrate the profound 
difftculty in the understanding of these phenomena. Experimentalists such as 
chromatographers are used to considering cause-effect relationships, e.g., the fact that 
a displacement mechanism is at work, suggests at first (but false) sight that a positive 
EA peak would be accompanied by a positive DCM peak, because the addition of EA 
to a phase system with DCM would always release DCM from the stationary phase, no 
matter what the ratio of the ki values is. More detailed treatments show this view to be 
entirely wrong; the slot machine of mathematics delivers another result, that described 
above, in which the sign changes with change in capacity factor. 

There seems to be no way to explain the behaviour of such systems, even in 
quantitative terms, without using complex mathematics. We simply have to accept as 
facts that only concerted disturbances can move as identities through the column and 
that the quantitative relationships, such as peak positions (and relative magnitudes of 
disturbances) can only be found as eigenvalues and eigenvectors, respectively. 
However, the perseverence of eigenpeaks in the column may become more familiar 
with the following reasoning. In every column slice, the change in the total 
concentration of each component is determined by the local gradient in the mobile 
concentration. When these changes for all components are exactly in proportion to the 
deviations already present, these new deviations will still have the same ratios. In this 
way the relative rate of change and hence the speed is the same for every component. 
The changes are determined by the prevailing concentrations and the transport matrix. 
That explains that only particular combinations of deviations can travel without being 
fragmented (in fact resolved in the chromatographic sense) into disturbances moving 
with different velocities. 

Relationship with theories from preparative chromatography 
It is important to stress that the close relationship between the phenomenon of 

system peaks, indirect detection, etc., and those observed in heavily overloaded 
columns, as studied by the pioneers of chromatography in the 1940s reviewed by 
Helfferich and Klein” and more recently by Rouchon et al.‘, and in chemical 
engineering by Rhee and Amundson’. In these discussions the concept of “paths”“, 
r’ or hodographg is developed. These are lines in the composition space formed by 
using the ?/concentrations as coordinate axes. A disturbance following such a path has 
the same character as the concerted set of minor disturbances described above: all 
concentration variations are rigidly interrelated. Also, the transport through the 
column of a disturbance following a path does not split and is described by relatively 
simple equations: a translation with constant velocity ,l [a function F(z - At)] or 
a dilatation [a function F(z/t)]. 

The linear eigenvectors described above are the tangents to the N paths in 
composition space (Fig. 3). 

EIGENPEAKS IN CZE 

It has been demonstrated above that the same phenomena have to occur in 
electrophoretic experiments. Eqn. 9, for the simpler case of simple ions with no 
reaction such as protolysis, can be written as 
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/ 
/ 

cont. C 

Fig. 3. The “paths” according to Helfferich and Klein1o in coherent boundaries and the eigenvectors for 
minor disturbances. The latter are the tangents to the former. 

ack a Ci 
E=I”kr’aZ & -0 all 1 < i < N (10) 

where IC = &iCiZiF 

where F is FLraday’s constant and the z values are the ionic charges. Thus: 

The expression in parentheses can be expanded as a linear function of the c values. In so 
doing, as indicated, one should consider N - 1 ions, leaving the concentration of the 
Nth ion to be determined afterwards from the electroneutrality condition. Rather than 
going through this exercise in general equations, we shall do it for a particular example, 
which demonstrates the essential features. Suppose a Li+ ion is electrophoresed at low 
concentration in a carrier of KBr. Take Br- as the indifferent ion, and set I/F to unity, 
as this is just a constant. We then have (with a negative PBr value) 

K = cLi@Li - flBr) + ckhk - PBr) 

CkLi a PLiCLi -=_ 

at az cLi(PLi - PBJ +-CKCPK - PB~ 1 
acK a PKCK -=_ 

at aZ cK@K - hr) + cK(PK - &r) 1 
Expansion in AC values of the factors in parentheses gives 
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!!_!%A, . . 
at 

LI,LI 

aAcLi 

C?Z 

8-4~~ A 
adeLi aAcK 

~ = 
at 

K,LI "- + AK,K'- aZ aZ 

with 

A . _ PLi 
LI,LI 

pLicLi@Li - PBr) = Ea 

K lc2 u 

ALi K = _ pLicLi@K - PBr) 
Ic2 = 0” 

A K,Li = - 
pKCKhLi - PBr) = PKCKhLi - PBr) 

lc2 lc2 

The eigenvector problem is therefore 

PLi - 0 
lc 

- 
PKcKhLi - PBr) o 

lc2 

?Li 

= 

eK 

IeLi 

AeK 

In this case, it is easy to find the two solutions: 

= _ pKcK&Li - PBr) 

CKhK - PBrhLi 

122 = 0, eLi:eK 

= _ PK @Li - PBr) 

PLi @K - PBr) 

= 0 

The first solution corresponds to the normal electrophoresis of Li+ (the factor l/rc in A1 
occurs because I/K was set to 1). The K disturbance accompanying Li+ is related to this 
by the factor pK&Li - pBr)/bLi&K - pii,)]. The disturbance in Br- can be calculated 
from the electroneutrality, eRr = eLi + eK: 

’ Equal to these terms as cLi zz 0 and K z cK(pK - par). 
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,,Br.eLi = 1 _ pK@Li - h) = _ PBrbLi - PK) 

pLi@K - PBr) pLi@K - PBr) 

We note in passing that the expressions for e& and ek can be obtained from each other 
by interchanging the indices K and Br, which indicates that the same solution would be 
found if K had been chosen as the Nth ion. 

The above shows that (a) The indirect detection of K cannot be described as 
a direct consequence of electroneutrality. This would give ek = - eLi, with ear = 0. 
Thus, as in Langmuir chromatography, the direct application of intuitive notions leads 
to an erroneous result. (b) K+ as well as Br-, i.e., ions of both charges, could be used as 
a marker ion. (c) Only when pLi = ,~k, a situation realized, e.g., when using isotopically 
marked K+ as the solute, is the intuitive result ek = - eLi, ear = 0 correct. This is what 
is to be expected physically; in that case, the Cl- ions are “decoupled” from the 
transport, as they would not “see” the substitution of Kf by Li+. 

The second solution has velocity zero, a stagnant disturbance, with identical 
variation in ck and ear, while Li is not involved. This means that a disturbance in the 
carrier electrolyte concentration does not move (relative to the liquid; of course, the 
osmotic flow will make it move). This is a well known fact in electrophoresis; it can be 
derived directly from the requirement that Kohlrausch’s regulating function (KRF) is 
constant in time: 

where zi is the charge of the ion i. AS ACLi = 0, it follows, from electroneutrality, that 

AKRF=dCK+dcs,=ACK 
PK PBr 

which indicates that AcK does not change with time, i.e., the disturbance does not 
move. 

It should be noted that the K+ and Br- disturbances travelling with Li+ can also 
be derived directly from KRF, two equations are needed to relate ek and e& to eLi: one 
is the constancy of KRF, the other the electroneutrality. However, for more 
complicated systems one needs the eigenvector treatment. 

Effect of a given injection composition 
The “composition” of peaks, i.e., the relative intensities in the various 

component disturbances, are now described in the le,l vectors. However, another 
problem is to describe the intensities of the various peaks that result from a given 
injection. In Fig. 1 it was already indicated how the vector Vi”j of the injection 
disturbance has to be decomposed into the vectors, eP, corresponding to the various 
“eigenvelocities”. However, the graphical tool will not be of much help when three or 
more components are relevant (see Fig. 4); in that case, one needs a numerical 
treatment. 

The decomposition of lcinjl into the le,, is a straightforward example of linear 
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t 

0.2 
cc e2 : k’=2.04 

t es; k’=0.79 

el ; k’=4.76 3--_ 1 

/ 

Fig. 4. Eigenvectors in a three-component system, containing A, B and C in the mobile phase. Vectors e2b 
and e3 are in the back-plane (cA = 0); ei protrudes out of this plane and corresponds to the elution of 
compound A that does not occur in the mobile phase. The graph has been calculated assuming Langmuir 
adsorption with an expression qa = &,,,/(l + KAcA,,,, + K,,q,,, + K&with KA = 10, KB = 3.0 and 
Kc = 5.0. 

algebra. The ep,i matrix (all eigenvectors assembled to form a square matrix), indicated 
by llEl1, is bound to have an inverse, because the e,,s are independent. The result 
llR]l = l/E/l -’ is also equal to the set of left-eigenvectors of the transport matrix [JAI1 
(left and right eigenvectors have the same set of eigenvalues). Once JlRlJ is known, the 
intensities of the various peaks, denoted by Pp, are given by IPI = l/RI/ . ICinjle The 
electrophoretic example with Li+ in KBr may illustrate this: 

IIEII = ‘, ; 
/I II 

where LX = + p&r - pnr)/pLi(pk - pnr). It follows that 

IIRII = lc( ; 
II I/ 

Case I. Injection solution deviates from carrier by 0.0001 A4 Li+ and 0.0001 
A4 K+ (i.e., the Cl- concentration is the same). 

Pl = 1 0.0001 M + 0 . 0.0001 A4 = 0.0001 A4 
P2 = a . 0.0001 M + 1 . 0.0001 A4 

The first peak has intensity 0.0001 M in Li and -u times this value in Kf . The 
second peak (stagnant) has intensity 0.0001 M(1 + ~1) in K+. Note that the K+ sum 
over both peaks (and that of Li+) equals the injected concentration. 

Case 2. Injection of Li, 0.0001 M, “on top of’ the base composition KBr, i.e., 
Vinj,nr is also 0.0001 M. This yields 
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PI = 1 0.0001 A4 + 0 . 0 = 0.0001 
Pz = u . 0.0001 A4 + 1 0 = c( . 0.0001 

The first peak again has intensity 0.0001 A4 in Li+, of course, and -a 0.0001 
M in K+. The second, stagnant, peak has a 0.0001 A4 in Kf. The sum of the K+ 
responses is zero, as it should be. 

Case 3. Only by exactly “tuning” the injection of K+ to e.g., 0.0001 A4 Li and 
-a 0.0001 A4 K+ can one avoid the “excitation” of the second peak: 

Pz = a . 0.0001 A4 + 1(-a . 0.0001 A4) = 0. 

Similar calculations are possible for liquid chromatography although, instead of 
using first principles to describe the non-linearities, one has to either use experimental 
composite isotherms (which are scarce), or rely on a model for the distribution 
behaviour such as the Langmuir composite isotherms. When suitably programmed, 
the arithmetic does not cause any problems. 

DYNAMIC RANGE OF INDIRECT DETECTION 

In both separation techniques the buffering of conditions is not perfect; it can be 
exhausted when high concentrations of solutes are present. When increasing these 
concentrations or (which amounts to the same) increasing the mass load while not 
changing the injection volume, inevitably at some point the non-linear behaviour will 
be visible again. Usually peaks then start to develop a triangular shape. This is the 
result of the fact that high concentrations travel [i.e., the velocity “of a concentration” 
is (dz/dt)J at a different velocity than do low concentrations. Such effects have been 
described in HPLC’89’g as “mass overload”, “concentration overload” or “thermo- 
dynamic broadening”, which are good descriptors. Unfortunately, in CZE the term 
“electromigration dispersion” has found acceptance. In fact, there is no dispersion at 
work or anything that can be described formally as such. This is clear from the fact that 
the same effects can lead to zone narrowing, e.g., occurring in isotachophoresis. It is 
proposed here to retain a more neutral term, such as “concentration overload”, in 
order to indicate this type of extra zone broadening. 

Differences in the velocities of high and low concentrations will become visible in 
the electropherogram or chromatogram as soon as they are larger than the “natural” 
uncertainty in the velocity connected with peak dispersion. When the latter is 
expressed as standard deviation and taking relative to the peak position, it equals 
l/JN. It follows that relative variations in migration rates should exceed this value; 
this is more critical for CZE with 100 000-300 000 plates than for HPLC where plate 
counts often do not exceed 10 000. How strongly the migration rate varies with the 
concentration of i depends very much, of course, on the particular type of solute and 
system. However, when indirect detection is used, for detecting a solute i with a marker 
M, the marker concentration cM is necessarily coupled to ci, otherwise no response 
would be obtained. If the marker M is involved in the migration of i, it can be assumed 
that the migration of i is also influenced by the concentration cM. Indeed, carrying out 
various numerical experiments, e.g., with Langmuirian adsorption in HPLC, or for 
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CZE systems, shows that the marker concentration always, under conditions where 
indirect detection works, has a strong influence on the migration rate of i, 1% in cM 
leading to variations of the order of 1%. 

As the migration rate has to be kept constant within a factor of 1 + l/,/N, as 
a general rule of thumb it can be stated that the marker concentration is to be held 
constant within the same factor. Thus, only a fraction of l/,/N of the detection range 
offered by the detected marker at its given concentration can be exploited; when a 1: 1 
response is obtained, the solute concentration has to be kept below c,/,/N, in order to 
avoid peak deformations. As, on the other hand, CM cannot be chosen to be indefinitely 
high (e.g., a UV detector would not work at absorbances of 3 or higher), the indirect 
detection principle can in general be expected to have a negative effect on the 
loadability and dynamic range of the system. The problem may turn out to be more 
severe in CZE than in HPLC, as the plate numbers are larger and the detectors work 
under less favourable conditions. 

This reasoning, crude as it is, obviously is strongly connected with the necessity, 
most explicitly formulated by Kuhr and Yeungi6, to use instrumentation with a “high 
dynamic reserve”, i.e., a capability of detecting small relative changes in the 
concentration of the marker. 

CONCLUSION 

It has been shown that system peaks and indirect detection can be treated 
mathematically from one viewpoint. The quantitative relationships follow readily 
from straightforward mathematics and can be obtained, once the distribution or 
transport behaviour is known, by programs that are straightforward but may 
sometimes be fairly complicated. 

Unfortunately, it remains difficult to develop an intuitive direct understanding 
of the phenomena. It has been shown here that it is even risky to rely on such intuitive 
notions, as they tend to lead to wrong conclusions. 

The common basis of indirect detection in HPLC and CZE has been elucidated. 
These possibilities do not depend on particular physical conditions, such as 
displacement in the distribution process or the concept of electroneutrality, but are 
always present when for some reason or another (displacement, mutual reactions, 
coupled protolysis) compounds influence each other in their transport behaviour. 
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